
N91-20679

EXPERT SYSTEM DECISION SUPPORT
FOR LOW-COST LAUNCH VEHICLE OPERATIONS

Dr. G.P. Szatkowski and Barry E. Levin

GENERAL DYNAMICS
Space Systems Division

5001 Kearny Villa Road
San Diego, CA 92138

(619) 496-7093

Sponsored by: USAF/Air Force Space Division

ABSTRACT

This describes progress in assessing the feasibility, benefits,
and risks associated with AI Expert Systems applied to low
cost expendable launch vehicle systems. This work was
funded under the joint USAF/NASA Advanced Launch System
(ALS) Program as applied research. Part One identified
potential application areas in vehicle operations and on-board
functions, assessed measures of cost benefit, and finally
identified key technologies to aid in the implementation of
decision support systems in this environment. Part Two of the
program began the development of prototypes to demonstrate
real-time vehicle checkout with controller and diagnostic/
analysis intelligent systems, and to gather true measures of cost
savings vs. conventional software, verification and validation
(V&V) requirements, and maintainability improvement.

The Expert System advanced development projects (ADP-2301
& 2302) main objective was to provide robust intelligent
system for control/analysis that must be performed within a
specified real-time window, in order to meet the demands of the
gwen application. Timing is defined as responding to new data
frames of 0.1 to 1.0 second intervals. Here we describe our
efforts to develop two prototypes. Prime emphasis was on a
controller expert system to show real-time performance in a
cryogenic propellant loading application, and safety validation
implementation of this system experimentally at the USAF
Cape Canaveral Air Force Station Atlas Complex-36, using
commertial-off-the-shelf software (cots) tools and object
oriented programming (oop) techniques. This 'Smart GSE'
(Ground Support Equipment) prototype is based in C, with
imbedded expert system rules written in the CLIPS protocol.
The relational database ORACLE® provides non-real-time data
support.

The second demonstration develops the Vehicle/Ground
Intelligent Automation concept, from Phase-I, to show
cooperation between multiple expert systems (and conventional
software modules). This 'Automated Test Conductor' (ATC)
prototype utilizes a Knowledge-bus approach for intelligent
information processing by use of virtual sensors and
blackboards to solve complex problems. It incorporates
distributed processing of real-time data and object-oriented
techniques for command, configuration control, and auto-code
generation.

BACKGROUND

The Air Force and NASA have recognized that our nation's
current suite of launch vehicle systems has a number of
problems making them inadequate for the projected needs after
the late-1990's. A reduction in cost to $300/lb of payload

delivery, to LEO, 0.999+ reliability, high resiliency
(elimination of long standdowns of many months), and high
launch rate capacity are masons behind the joint USAF/NASA
effort for an operational ALS and Shuttle 'C'. ALS will serve
the commercial and DoD mission models beginning in 2000.
In order to meet the goals of $300/lb and launch rates as high as
25 missions annually, on-board systems and their associated
ground operations segment must be made as autonomous as
possible, while at the same time improving reliability and
safety. Under the ALS Program, a study was initiated to
explore the use of EXPERT knowledge-based system (KBS)
techniques for the purpose of automating the decision processes
of these vehicles and all phases of the ground operations
segment by assessing the feasibility, benefits, and risks
involved.

An expert decision aid is a software approach to solving
particular problems that are constantly changing over time and
are complex or adaptive in behavior, the opposite of an
analytical problem that is basically deterministic. Examples of
these types of problems are: the re-scheduling of a vehicle
checkout due to a damaged cable; or, determining if a system is
indeed faulty given conflicting sensor readings. These heuristic
problems require a depth of knowledge and experience (art
rather than science) to form solutions quickly. Expert systems
embody that collection of knowledge and experience in modular
pieces that are rules and facts that describe the proper thought
process for a given set of circumstances arrived at by any path.
It is this modular independence that makes expert systems
attractive. The incremental improvement of knowledge and
experience can be built and tested readily without re-testing the
rest of the software system, unlike conventional software that is
difficult to maintain in a day to day changing environment [1].

PROJECT DESCRIPTION

The objective of this program is to develop, demonstrate, and
evaluate the use of expert decision aids in areas that would
improve ground and on-board system autonomy for the
purpose of reducing the life cycle costs, shortening the
processing critical path time, and improving safety and vehicle
reliability. This technology program continued the work begun
under the Phased study: Space Transportation Expert System
Study (STRESS), contract managed by the USAF Wright
Research and Development Center [2].

Tasks consists of an assessment of cost benefits vs
implementation risks for specific applications, and
demonstrations of key performance requirements to show
feasibility within the selected application environment.
Experience from our launch vehicle programs and other R&D

304

efforts shows that there are many opportunities in operations
that reduce costs and improve autonomy, including:

• Ground operations: dally planning support and timely work-
around decisions aids

• Ground checkout: autonomous operations and control

• On-board systems: monitoring, integration, and control

• Launch day: fly-with-fault diagnostics and decision aids

From 33 applications identified in Phase-I [3], cryogenic
propellant tank loading was selected for a performance
feasibility demonstration in order to reduce the risk of
commitment to this developing technology. The Smart GSE
prototype was of a fractional scale, sufficient to give a good
performance correlation to a full-scale implementation. This
demonstration intended to show:

• Ease of human interface to facilitate maintainability at the
non-technical level;

• Real-time system performance for an appropriate level of
complexity;

• Integration to both vehicle and ground hardware, and data
systems;

• Validation methodology consistent for ground and on-board
applications [4].

The second objective, targets the incorporation of KBSs into a
combined Vehicle / Ground Intelligent Automation System. The
"Knowledge-Bus" (K-bus) architecture, conceived in Phase-I,
was used as the baseline concept in developing a maintainable
mix of multiple conventional and knowledge-based systems.

APPROACH / TASKS
Expert Systems- 2302

This layered architecture supports modularity and reusability of
KBS components via object oriented programming techniques
(hierarchial components, inheritance of methods, and
polymorphism of functions) and knowledge-base partitioning
[3] (for R/T performance and V&V efficiency). A second
prototype demonstration of an Automated Test Conductor
(ATC) system was begun to show cooperating intelligent
systems in operation using blackboards and virtual sensors
(elements of the K-bus concept). This approach is being
successfully used to support the NASA Space Station Program.
Elements of this architecture are already available in
commercial-off-the-shelf software products. Development of
an overall integrated architecture early in the investigation
provides a context and focus for future demonstration
prototypes, and assure the synergy of their gains in both
development and use in vehicle operations, for example
Integrated Health Monitoring OHM).

This technical approach is shown in Figure--1.

SMART-GSE Procedures m This development task
focused on supporting real-time control of time critical vehicle
operations using KBSs. The application selection from the 33
candidates, the ranking shown in Figure--2, was a difficult
choice. The demonstration had to require actual real-time
servicing of decisions. It had to be sufficiently complex in
scale to provide a good source of data for performance issues
and for costs. It had to be non-trivial, i.e. dealing with real
data so as to provide detailed feedback for correctness to serve
as a benchmark for verification/validation testing. The final
choice was cryogenic propellant loading of the Atlas launch
vehicle. Although this application ranked in the middle, it
satisfied all the requirements. The prototype would:

_E NgRAI,. IDYNAMI¢ig

Space Systems Division

INTEGRATED VEHICLE/GND AUTOMATED CHECKOUT

(SMART PROCEDURES DEMONSTRATIONS)

• LIMITED ON-BOARD EXPERT HEALTH MONITOR

- Sensor / Data Fusion Analysis
- Exp Syst Integrated With On-brd Environment

• AUTOMATED VEHICLE/GND CHECKOUT

-Exp Syst Automated Checkout Processing
- Build Guidelines For Automated Analysis

"Prove Scalabilitv-""= - Tests Vhcl /Gnd Knowledge-Base Coop_

ost Savi _, SUBSYSTEM FAULT DIAGNOSTICS C
- Integrates Time-Critical Fi tactic
- Incorporates Cooperating Cntl Mn!

u (May Use AI / CLIPS / m

........... ""Prove Cost
I (REAL-TIME CONTROL/TANKING DEMONSIHA HUN)
I" -Decision AidsforGnd Procedures . Sav!.ngsvs..

I -Integration to Real-Time Hardware _onvenuonal L;om
I - Refines V&V Studies

- Demo's Knowledge Capture & Maint.

VEHICLE/GND INTELLIGENT AUTOMATION DESIGN

(COOPERATIVE-DECISION KNOWLEDGE-BUS FION) _
- Provides Distributed Knowledge-Base Support _ Maint enance",,

- Shared Expert System Kernel I _- Knowledge Path for Cooperative Systems

Figure--l, Expert Systems ADP Approach

305

f'anRI

•4 sses JRl#nl

3| 49

32 O0

:tO 38

29 34
29 27

20 72

27 IS
26 78

23 81

23 OS

22 IS

19 44

19 27
19 14

ill 13

1703

16 79

16 77

t6 32

16 OS

156!

IS 2S

14 8S

14 $7

13 711

t3 SS
13 37

12 _,I

II I%

HUJ

78J

641

S 511

Fi_LrC-_2, Final Relative AI Candidate Ranking

• Prove _ integration with GSE hardware and software by
being installed at USAF Cape Canaveral Air Force Station
Complex (CX)-36. Timing being defined in terms of 1
second decision loops based on monitored feedback

• Provide the V&V benchmark by using the validated Tanking

Simulator available in the laboratory and later by using the
pad validation equipment

• Provide comparative development cost data wrt the same
task being done in conventional SAV on Titan/Centaur

• Provide long term maintenance cost data by being put into
service at CX-36 and compared to Titan/Centaur

The basic approach to the Smart GSE system was a tanking

controller built on a workstation using tools and standards so as
to make it portable to any variety of computer systems. The
demo used the CLIPS expert system shell from NASA/JSC.
This shell had shown promise in our internal R&D efforts as

capable of supporting real-time operations with suitable
extensions.

We based all graphical interfaces on the X-window standard
and Object Oriented Programming techniques. Here we used
the Transportable Application Environment (TAE) provided by

NASA/Goddard. This oop tool works on nearly all
workstations and Macintosh systems under X. To provide the
R/T feedback into the controller expert system, we used a PC
version of our existing validated Tanking Simulator connected

via a RS232 interface to the SUN workstation. We were using
a SUN 3 system but planned to move the demo to a SUN 4 to
do the timing tests. Later this would be moved to a Silicon

Graphics workstation system for porting to CX-36.

Automated Test Conductor (ATC) -- This development
task focused on supporting the integration of KBSs into the
vehicle processing environment; i.e. to actually have multiple

expert systems cooperate in the performance of a given
operation. The approach was to use the K-bus techniques in a

judicious fashion to demonstrate the concept was do-able and
without costly overhead making the concept impractical. The
demonstration would prove that it is possible to have
distributed knowledge-base support for control activities. This

would open the door for accepting many of the 33 applications
detailed in the Phase-I report. The driving force is the potential
cost savings by having shared software kernels, object
encapsulation of practices, procedures, and knowledge -- to

reduce validation, maintenance, and training. Further, the
automation can now extend into the management of systems
and not just isolated operations.

The basic approach in this task was to use multiple expert

system modules, orchestrated by an ATC module, and running
concurrently on 3 or more workstations. The workstations are

initially networked via Ethernet TCP/IP protocol using socket
transfer. For the R/T control management demonstration, we

are in the process of installing VME hardware linkages between
the workstations for message passing. The software being

developed followed the principles of the K-bus. Throughout
this project we used standard 'C' language and the GNU 'C++'
oop language. For UNIS (Unified Network Information
System) interfacing we used our own SQL-based data bridge to
the ORACLE® relational data management system. This

provided specification data to the expert systems upon demand.
The initial test was a simple cooperative tanking task between
subsystems. Later the Smart GSE controller becomes

integrated in this encompassing system.

SMART-GSE DEMONSTRATION

The system level requirements were based on inputs from the

Atlas CX-36 design and the system architecture developed
under the ALS basic pre-design effort. Figures--3,4 show the
required tasks and data-flows at the level of the Propellant
Tanking Manager and one of the 7 subsystems. The primary

features are first, the separation of management/control from
health monitoring for a P,/T system; and second the separation
of R/T feedback monitoring from diagnosis.

The prototype demonstration configuration is a laboratory
closed-loop test linking the Tanking Simulator with the expert

system controller. The Tanking Simulator consists of the
existing Atlas GSE models with inputs from Ground Skid
models and sequencing information from actual telemetry
flight-test data. The Tanking Simulator is operated in a

personal computer with a 100 millisecond cycle basis. This is
connected via an RS232 line to a SUN 3 workstation running
the expert system prototype. Preliminary validation tests were

to have been done here. Later this system configuration would
be modified to connect to the developmental launch control
computers in San Diego for initial integration of the actual data

telemetry streams. With this accomplished the transfer to CX-
36 should be relatively straight forward. Testing at CX-36
would center on reading the telemetry data and determining
performance variations in a variety of stressed situations. This
testing would use the pad's validation equipment and not an
actual vehicle. Timing test would be performed under a R/T

Unix system on a Silicon Graphics workstation. Both the
conventional equipment and the expert system would operate in

parallel and comparisons of performance would be evaluated
manually. The demonstration process is depicted in Figure---5.

The Smart GSE software configuration is shown in Figure--45
and highlights the significant elements. Some of these include
the NASA/JSC: CLIPS expert system shell, the

NASA/Goddard: TAE object oriented shell, and the ORACLE
® Relational Data Base System that was bridged to for

specification type data as needed.

The primary emphasis in this project has been to demonstrate

that expert systems can operate in real-time environments. It is

306

SMART GSE REQUIREMENTS (Level 3.1.3)
Expert Systems- ADP 2302

Evaluated R/T Issues for Command & Cntl wrt ES

Separated Mngt from Health Monitoring
I

pre-launch commands
from 3.1.2

propellant

system health -
to 3.1.2.2

load status

I

GG
GG

propellant

system health/ ...3.1:3..6

v t T?nki.g J

_ _ GSE Database

propellant phase selection

Yanking reqts

Figure--3, Propellant Manager requirements

SMART GSE RQTS- LO2 (Level 3.1.3.1)
Expert Systems- ADP 2302

• Evaluated Knowledge-bus Issues wrt Command & Cntl
° Separated Monitoring from Diagnostics

Flow control valve

Topping controlvalve
Storage tank outlet valve

L02 line vent valve
Fill and drain valve

Support valves

_ propellant loading

hicle data f3.1.3.1.2 _'_ . phase^

Manage __ from 3.1 .L_.b

GSE Database _/GrouL:_ystem) -

vehicle data / LO2 procedure ,jl / [

__.__ activations _ / _

_ schematic System _ k02

Ifeedback ,data health/ Loading Phase

"___tem J" load LO2 status to 3.1.3._
system health to 3.1.3.5 ----e=_

Figure---4, L02 Subsystem Manager requirements

307

A
REAL-TIME CRYO TANKING (SMART GSE) U -I]

This proves the use of AI In: 1) A Real-time Environment 2) Active control for a system R IIdemonstration to do LOX and LH2 Tanking implemented at ETR Complex 36B for an Atlas/Centaur _,

R/'r ETR-CX36B DEMO 12-90 Z

IN-LAB DEMO 06-90 ! I , -- II
', _ I L,^JEB- GSE I == II
_, _VV/L._),, '_ TANKING

IN-LAB DEMO 01-90 ', ,' I I I II
(W/MODELSONLY) _ I DEVELOPMENTALI ,' I °_"'_° I / II

• _ I GND COMPUTER I _ / / [] u

I l " , LAND-LINES _ '_ IITELEMETRYI ,,I , I ,, .t .-,, ,, , I NC 69 IPCM ___ (S.D.)
• , _, I _ I L/-_UIN_,M II I__U IN_,M I I

r--t ,A_,,_.. I ,' I _, I CONTROL II CONTROL I= '
,IGND SKIDS I I _ I ,,_ I COMPUTERII COMPUTERI PCM DATA

IVHCLCRYOI I _ I _ ILCC#1 '_LCC#2
IS,MULATORII _ I ,

I SAV/V I ,' I RfrDATAI ;Iv .FITGSE_I I R/TDATAI ./. _
I GSE I ,' I DISPLAY _ PROT_SP...LAY _T_E-_

I MODEL I ,' SySl__..s.z._j EX.SYSTEM/_ SYSLSySTEM_ _ DECISION

, . , , _ _ _ T_s_ _.

DGE-CAPTURE (;TS • V&V TOOLSET APPLE • TOTAL SYSTEM V&V _.
MANCE CONCER • COST COMPARISON TO T/C • MAINTENANCE COST ANALYSIS

Figure--5, Smart GSE shows evolution to full validation

R/T SMART-GSE EXPERT SYSTEM DEMO ,
I TOP LEVEL MENU CONTROL --- 't

/

I I/O (;NTL IO FAULT

X2N,X
I I' * ?tl I I_,.....)l " _f I

1_-3 I I I IS_ARE ' f I I'VA_WOATA
_ALVECMDS! / I I I ISPARE I I I VALVETRACE

I XDUCERSTAT I _,,, I _n I I I I ATLASLO2TANKING III I I - I

' _'-' _"" I_- "_ 1ATLASRPI FUEL TANKINGIC"TRLC"DCI,/(;'kOBJE_cTsllI "C';"_;'%"_"_'PRESSSYs'IlllI I DAGNOSTC
I/f I _ LIST I I I I CENTAURLHECHILLDOW_IIIII I I -W,,,r,,-, I

-- ICENTAURLO2TANKING ,,,,,_.,vvvoG_v;;;3_iL'_'F II I"C_X_'n":O:;_NK'NG,lllnpll ::::::: /
I_,...... I ,......... I I I I ATLASTOP LEvEL IIIIr I _ "

' _-=::_ _1 II-cEN_'°RT°_LEvELIIIIIIr
_ '1 GRAPHIC II1' OBJECTS

I DISPLAY lip I SPECIFICATION
WINDOWS I1' I WINDOW

GRAPHICSI --1

{OEAN HARRIS)] (CA_¢..I_4LOWRY& BRETT COOK[=) ._

• KNOWLEDGE-CAPTURE COSTS • V&V TOOLSET APPLIED

• PERFORMANCE CONCERNS

VEHICLE / GSE

FLUIDS

SIMULATOR

I USER I/F
CONSOLE

(GARY LaCROIX)

TAE V 4.0

Figure--6, Smart GSE prototype features include CUPS, ORACLE, and TAE cots tools

308

anticipated that the CLIPS shell would not be the only expert
system shell used in the course of the Project development.
Aspects of the Vehicle/Ground Intelligent Automation study
required for test planing and procedure coordination may better
use cots expert systems shells for goal oriented activities.

The prototype Smart GSE demonstration actually consists of
several expert systems working together. These are presently
modules linked within the same program, as apposed to being
true cooperating distinct systems.

Propellant Manager Expert System -- This ES is
required to accept a set of primary commands from the Mission
Manager and perform the necessary operations on the hardware
systems to accomplish the functions that the he has selected. A
sample list of the commands that the operator can select is:

TANK, DE-TANK, START, STOP, LAUNCH, HOLD,
STATUS

The Propellant Manager ES portion of the Smart GSE then
performs any necessary correlation between the different
systems under its control and issues a set of secondary
commands that will insure that the safety of the vehicle, pad,
and launch area will be maintained. Further, the Propellant
Manager ES coordinates the data about each of the subsystems
and adjusts each to ensure that they function smoothly between
systems and prelaunch phases. The data or status at this level
is also sent up to the Mission Manager for evaluation.

Subsystem Controller Expert Systems -- The
Propellant Manager coordinates commands for several
Subsystem Controllers. These sub expert system Controllers
are for each of the different fluid systems (LH2, LO2, LHe,
Hydrozine) and act upon the commands issued by
performing the functions that have been requested.

These Controllers are concerned with the detailed functional
commands to control the physical hardware and turn on or off
specific sequences of valves or other equipment. Typical
command decision-sequences made by the local Controller on
the functional elements would be:

FAST FILL, TOP OFF, PRESSURIZE, DUMP, PURGE ...

The subsystem Controllers process function (object) commands
by accessing a call to a set of conversion routines that would
take the function (object) request and perform the necessary
hardware interpellation. This is actually turn on/off the
necessary valves or equipment to perform the function in
question. An example sequence of valves would be:

(F-34-5 ON) (F-35-5 ON) (F-7-1 OFF) (F-22 OFF) ...

These Controllers also have responsibility for selecting the
primary or backup functions as necessary.

Health Monitoring Expert System m A Health
Monitoring expert system correlates feedback information and
statuses the health of the equipment. All critical function
feedback is sent to both this Health Monitoring expert system
and the expert system Controller. This direct feedback allows
fast close-loop response by the Controller. Non-critical
anomalies are analyzed by the Health Monitor expert system.
These problems are evaluated using the expert system data
fusion capability to ascertain if a true failure has occurred. It
then isolates the cause of the failure and notifies the expert
system Controller of the defect. This allows the Controller to
select appropriate backup functional equipment. In parallel, the
Health Monitor expert system notifies the Propellant Manager
Health Monitor of the defect and requests repairs. All
anomalies are reported to this top level Propellant Manager
Health Monitor to correlate with the other active systems.

Simulation training and validation testing- A

monitoring / debug mode of operation will be available on the
controller side of the sub level expert system to make
suggestions of what operation the operator should be selecting
and why. In the validation phase a 'scripting' capability would
be used for dynamic system testing.

Progress to Date -- The controller begins with a simplified
schematic display of all nine propellant systems. A menu bar
resident at all times allows the human controller to choose
options from pull-down menus. These features include viewing
alternate schematics, performing diagnostics on the imbedded
expert systems, and manipulating the program parameters to
explore or control specific scenarios. A more detailed view of
any subsystem replaces a top level schematic when the pertinent
name field is clicked on the top level schematic itself or when
the name is chosen from a pulldown menu.

Each schematic consists of a background with overlaid discrete
items. Valves, connections, and the tanks are discrete objects.
The 'valve objects' change color to indicate changed state, such
as open, closed, fault, or warning. A window containing both
static and dynamic information about a schematic item is
activated by clicking on the desired item. This information
comes thru. the ORACLE@ database bridge. A stretcher object
reacts to the changes in the propellant flow and indicates the
current tanking percentage completion on a sketch of the 'tank
object'.

Figures---7 is the top functional level schematic; Figure--8 is a
photograph from the SUN 3 display of the Smart GSE
prototype. The photograph displayed is one of two top-level
system displays, the one for the Centaur is shown and there is
one for the Atlas vehicle/ground propellant systems. The
remainding displays are sublayer displays of subsystems and
show increased detail of all the operational components that
facilitate the primary functions depicted on the top-level
displays.

Operationally the ES knowledgebases for the LO2 and LH2
subsystems were completed and had begun initial integration
testing. The displays were completed and had begun
integration testing with the Tanking Simulator. The displays
had not completed the animation software to show the actual
closed-loop data feedback from the Tanking Simulator. The
other subsystems knowledgebases were in various stages of
development when work was terminated.

Real-Time Issues -- The application as a controller implies
control of the real-time decision process in relationship to the
external environment that it deals with. Several methods were
explored in an attempt to devise techniques for controlling the
inferencing process and the rule-set that it evaluated. Some of
these methods are shown in Figure--9. The use of
SALIENCE is one of those techniques that is well suited to this
area of expert systems. Simply put, SALIENCE is another
term for rule-priority. How that priority is established, how the
priority is maintained over time, and how the priority scheme
interacts with the Inference Engine tie-breaking mechanism are
all important application considerations [5].

The examination of rules that do not fire during an expert
system application's cycle is the unfortunate overhead that
expert systems typically carry. Another method used was to
create a rule partitioning approach that would not require
modification of the standard CLIPS shell (as tried in the
Portable Inference Engine [6]), but would instead be
application-specific CLIPS code that could reduce the number
of rules present in the Rete Net at any given time. There are
only a few expert system development tools that implement the
concept of knowledge base rule 'clustering' where production
rules are organized into logical arrangements to facilitate better
control over their execution. An example of this approach

309

Figure-7, Top functional level SCHEMATIC for Centaur pmpcllant systems

Figure-8, Top functional level OBJECT-ORIENTED DISPLAY

310
ORllGlNAL PAGE IS
OF POOR QUALITY

(called 'Function Control Blocks') is found in IBM's Expert
System Environment (ESE). The challenge was to create a

similar rule partitioning approach in CLIPS without any
significant degradation in performance - i.e. continual real-time
operation. The method [1] removes rule 'clusters' that were
not used during a real-time cycle and adds any 'clusters' that

are required during that same cycle. In developing our CLIPS
approach, minimum overhead costs were unavoidable. To

date, R/T operational performance has not been tested.

Using this approach, verification and validation techniques for

expert systems are more likely to succeed than with traditional
expert systems. By efficiently 'clustering' the rules and facts,

modular testing of modifications/enhancements are easier to
perform than non-modularized expert systems applications --
i.e. each partitioned rule 'cluster' can be independently verified
and validated. This is a significant advantage over expert

systems with a non-partitioned knowledge-base, and can
ultimately lead to lower expert system
maintenance/enhancement costs, and with better
documentation.

AUTOMATED TEST CONDUCTOR (ATC) DEMO

The preparation and launch of a contemporary space vehicle is a
labor-intensive process caused by the need for cooperation

between many interdependent systems. In the last decade
commercial software tools, capable of capturing the knowledge
and practical experience of an expert as well as represent the

design of the system, have been developed that can contributed
to saving both cost and schedule. However, most of todays
intelligent program packages suffer from the inability to
communicate or act cooperatively with conventional systems or

similar systems, or operate in the R/T environment. Our
previous R&D experiences have explored the use of expert
systems technology in practical situations. We have

demonstrated expert systems operate in near real-time, work
cooperatively with conventional R/T systems, work

interactively with object-oriented graphics, and integrate with
an off-the-shelf relational database management system. These
R&D projects demonstrated the essential capabilities needed for

cooperation between distinct intelligent modules, real-time
communication, and intelligent access to stored data files.

Based upon the Vehicle/Ground Intelligent Automation concept
from Phase-I, we are attempting to demonstrate cooperation
between multiple expert systems (and conventional software

modules). This 'Automated Test Conductor' (ATC) prototype
utilizes a Knowledge-bus (K-bus) approach for intelligent
information processing by use of virtual sensors and

blackboards to solve complex problems. It incorporates
distributed processing of real-time data and object-oriented
techniques for command, configuration control, and auto-code
generation. Figure--10 pictures the final goals of this

demonstration. Ultimately the K-bus would link conventional
launch processing software and a distributed collection of

expert system modules of various types with the vehicle

avionics having perhaps some on-board intelligence for
integrated health monitoring. The benefits would be proof of
the concept R/T operability, scaled cost comparisons, and a
testbed for V&V.

Abacus Programming Corp. and the LinCom Corp. were
participating subcontractors.

Development Philosophies m The ATC demonstration

itself will be developed according to four general philosophies:
autonomy, distributed control by modular expert systems,

information transfer at a high level, and the use of intelligent
databases.

System level philosophies:

CRITICAL RESPONSE ISSUES FOR R/T OPS
Expert Systems- ADP 2302

_/ • Saliences (prioritized rules)

• Priority Scheduling (dynamic saliences)

• Progressive Deepening

• Variable Precision Logic (depth of analysis wrt value of results = f(time))

• Decision Analytic Techniques (depth of search wrt value of results = f(time))

• R/'r A* Search (best-first search)

_/ • Bypass ES with Interrupt

x/ • Interrupt Inserted Facts

_/ • Single Valued Facts (2 fields vs 4 fields: (obj,val))

_/ • Retract Seldom Used Facts

_/ • Clause Ordering (RETE algorithm)

• Shorten Variable Names

toolset • V&V Trimming (remove redundant facts, subsumption)

_/ • Data Preparation (scaling, thresholding, changes-only in data)

• Partitioning of the KB

_J • Faster Algorithms (OPS-83, PIE)

_/ • Perform Math Functions Outside ES

• Use Alternate Paradigm (frame, model-based, etc.. as suits problem)

x/ • Quadruples Facts (4 fields: (obj,attrib.,value,confidence))

Figure--9, Critical Response issues considered for R/T operations

311

• Autonomy- The ALS environment will require that support
systems be relatively autonomous and capable of independent decision-
making. This will reduce the need for a standing army of engineers and
ease the impact of the anticipated loss of older experienced personnel.

• Distributed Control -- The test conductor will coordinate distributed
controls for ground systems equipment (GSE) and vehicle avionics
systems. The GSE is a distributed system, distributed both functionally
and physically. Functions such as test procedures, fault diagnosis, or
scheduling may be performed by separate expert systems. Physical
distribution will be permitted, with the demonstration performing on
distinct workstations.

• High-level Intelligent Information Transfers -- The demo will use
symbolic or language links which will allow the modules to share
common knowledge, while performing their distinct functions. This
sharing will be intelligent in that it will anticipate knowledge
requirements by the modules, and supply them in compatible forms. It
is anticipated that the real-world system will supply this information
through common real-time or non-real-time lines.

• Intelligent Databases -- Data records and files will be handled
according to specific heuristics which take into account interconnections
and dependencies. Smart schematics, for instance, would cascade
externally-caused changes to all relevant data records.

• Hardware Independence -- The program will be developed so as not to
be limited to a particular hardware network or machine. It is anticipated
that the applications will be written in different languages, on different
machines, using different operating systems or inference engines. The
final system hardware is unknown; therefore, the test conductor will
accommodate these varying components, with minimal alteration.

• Real-time Performance -- The software selected must satisfy real-time
performance requirements, when required. These requirements will be
driven by the necessary integration to hardware and real-time software
systems, such as the avionics software on the vehicle.

Software philosophies:

• Language Standards -- Standard high-level languages shall be
employed, to simplify development and maintenance. The language of

choice is ADA. Other languages will be accepted, only when driven by
higher standards, i.e. shells, cots packages, etc.

• UNIX Commonality -- The R/l" UNIX operating system will be the
system of choice for the development and functioning environment of
the ATC. This will provide for distributed system commonality while
supporting real-time. UNIX is a wide-spread workstation operating
system, and provides many libraries and abilities which are necessary
for the ATC, such as interprocess communication, etc.

• Existing Toolkits -- Commercial off-the-shelf (cots) products will be
employed when they will adequately satisfy the task requirements. The
benefits here are obvious.

• Object-Oriented Programming -- The test conductor will be developed
in accordance with object-oriented programming techniques. Currently
the C++ language is targeted, promoting software reusability and
functional modularity consistent with the object-oriented philosophy.
TAE, a graphics package developed in C++ by NASA/Goddard,
simplifies the use of XWindows, and promotes an iconic object-oriented
user-interface.

• Shells and Environments -- Commercial shells and environments that
are proven to adequately satisfy the task requirements will be utilized.
For the artificial intelligence portions of the tes_M, such as the K-bus,
CLIPS will be the shell of choice. CLIPS interfaces well with the C

language and provides enough functionality to satisfy our R/r
requirements. Other AI paradgms will be used as required.

• Permanent Data Storage -- The ATC will need an imbedded database
system, both for its system functions and its nodes. The database
currently targeted is Oracle's relational database management system,
which interfaces easily with the C language and is hosted on several
workstations. A SQL-bridge will link the two.

Knowledge Bus n A critical component of the ATC

demonstration is the Knowledge Bus. As its name implies, it
provides a communication path for a higher level of information
transfer, not simply data. The K-bus is a layered architecture in

an object paradigm for development, integration and
verification of distributed real-time systems, see Figure--11.

DESCRIPTION OF FINAL DEMONSTRATION

Expert Systems- ADP 2302 (02-92)
AUTONOMOUS CHECKOUT

• Proves Scalability of Costs for Development & Operations

_CCconventionaiSYSTEM."Category-ADem°nstratesMultiple ES Working in an IntegratedTankingOps Environmenti_Verification / Validation of the Ex.Syst. In IIn [

• Integrated Smart Models & UNIS DB to Intelligent Ops _U_HCheckout &

Procedural IHM Ex.Syst. "ff_'/a"/I'

software ALS
(ADA, etc.) AVIONICS

(MPRAS)
TESTBED

UNIS
Smart Schematics

Smart Models

Distrib. DB's

Ex.Syst. Ex.Syst.

Cryogenic Environmental
Tanking _ Cont[oller

-- C°ni°lle_ I

Automated Limited

C/O Subsystem

Test C_nductor Diagnostics_,

Figure--10, Autonomous vehicle checkout is possible using the K-bus approach

312

Systems implemented under the K-bus can include both
knowledge-based and conventional procedural components.

The K-bus features tools to ease development and coordinate
functions that permit diverse applications to operate as a
coherent system. Just as an operating system manages physical

resources, the K-bus provides the means to access common
reasoning services for embedded knowledge-based applications
and analogous high-level services for procedural applications
and V&V.

The K-bus concept was originally developed in Phase-I with a

Design Specification for supporting a distributed network of
cooperating expert systems serving an integrated
Vehicle/Ground Mission Management System. It was
anticipated that such a system would take the maximum

advantage of semi-autonomous agent processes with
knowledge-based communication and control to perform
operations and vehicle/ground checkout. Phase-II applys these

concepts to a working prototype:

• Development of design specifications of the K-bus, and a
User Manual describing how to use its facilities in

developing a distributed application.

• Detailed design of the following K-bus objects:
Object, SaveableObject, SystemCall, List, Buffer, String,

Attribute, Socket, PostOffice, Finder, Message,
KnowledgeUnit, KnowledgeSource, MessageManager,
Agent.

• Implementation of these objects as a C++ library and
Alpha testing of them with a simple driver program. This
library was developed with Oasys C++ compiler and the
Apple AU/X operating system.

• Rehosting the library from the development Oasys system
to the Gnu C++ compiler and SUN workstation for
integrated testing.

Aspects of the K-bus -- As previously stated, the K-bus

follows the distributed object oriented model of interaction

between software modules, defined here to be loosely-coupled
'agents'. Further, this supports the open, continuous
processing characteristic of cooperative systems, and which
makes them much more complex than traditional consultation-

based programs. This event-driven programming methodology
is also shared by several conventional systems, such as X
Windows. In each case, procedures ("event handlers") are

associated with events that can occur asynchronously, such as
the user clicking a mouse, or a database update.

Agent -- The agent is the fundamental active entity in the K-
bus, encapsulated as an object which communicates by

messages. Currently an agent and its message manager occupy
a Unix process, so its boundary exists not only as a software
object but is also enforced at the operating system level. An
agent is defined as a collection of knowledge sources and an

organization. These knowledge sources may be implemented
as expert systems or a conventional system. Each knowledge
source has a list of capabilities and interests. This list matches
questions it can answer and information it would like to be told.

The agent advertises these attributes with the Finder and keeps
a cache of other agents' capabilities and interests for subsequent
communication.

An agent's specification thus permits implementation along
several sizes of granularity. Internally, it can be a whole
organization of problem solvers, or just a simple C program. It
has a scheduler component for control of its knowledge sources
and is not necessarily serial. Its state may be dormant or active,

but currently most agents are eternally vigilant or waiting for a
reply. For efficiency reasons in Unix-like environments a large
grain may be preferred, and this can be used at the next layer up

as a generic task (an agent which is a specialist in one area of
problem solving).

An agent's capabilities and interests represent a model of its
goals, plans, abilities and needs that other agents can use for

The "K-Bus" is a

Layered Architecture

¢/J 7. Applications
v

I Applications [Tools
lb.v

8 6. Generic
Applications I' Generic Applications

v

5. AI Paradigm
Toolkits

I'

I Domain Specific Objects 1_ I Generic Tasks

v
4. Basic K-bus

Toolkits
Knowledge Rep Ill = I tI s° o. I P" 0rganizational Paradigm I Inference EnginesSupport

=*
g

3. Abstract
External
World

I' I I I' ' ' Distributed ILl I ConventionallLI
I t)ist"_ed I User _tra=DBMS Interface Sensors/Effectors CommunicationModelsI-r I Pro(]Lane JJ

c

2"C°ncrete I'1 _J I 1= _J-J I I'NetwOrkInterface l_J-jExternal I OS/NOS DeviceInterface
Wodd

v

8
1. Devices &

Users
I Physical Objects

i=...
v

Figure--11, Autonomous vehicle checkout is possible using the K-bus approach

313

cooperation. An agent can choose not to cooperate by not
advertising this model, but in general they can build up more
extensive models of each other by starting with the originally

advertised capabilities and interests and then learning from

experience by caching results. For example, two agents may
have a capability to do arithmetic, but by trying each the faster
one is identified and will be preferred in future requests. An

agent can have a reflective ability by installing probes in itself

(for example, to measure the number of rules fired by a
knowledge source's inference engine). This ability allows it to
monitor its progress and interrupt if necessary. The
combination of agents into a cohesive problem-solving team is

achieved by creating an organization. Figure--12 is an example
of the internal organization of a complex agent.

Post Office - Each agent has a Post Office object, which

queues incoming messages and permits addressing by name,
rather than location. The Post Office uses a distributed Finder

object, which keeps track of the addresses of active objects and
maps them to their globally unique names. Furthermore, agents
can advertise certain attributes (see later section) which are also

registered with the Finder and permit communication by
semantics rather than just syntactic names.

Message -- The interaction medium is the message, the glue
which enables the transfer of data and control between the

agents. A message contains fields which identify the sender and
receiver, an object (such as a question or answer) an optional
time tag and list of attributes (which may include its expiration

date or application-specific information). Control is passed by
messages which represent remote procedure calls - they are
intercepted by an agent's message manager. The message
manager is responsible for converting messages to procedures

and keeps a queue of questions received together with their
askers (for subsequent direction of replies). Remote procedure
calls by default are asynchronous (the caller doesn't block and
wait for its completion), but may be synchronous if required

(easier to program as it fits the conventional procedural
language model). The question of whether the receiving agent
blocks until it processes the request depends on the
organization used: if the agent does - it is under the control of
the sender (a client-server relationship); if not - it is

autonomous. Of course, requests to lower-level services (such

as a database manager) are processed synchronously - only
high-level agents can own a thread of control.

Organization m An organization is simply a collection of

agents who know each others' capabilities and interests, this is
an implicit specification, encapsulated by knowledge existing in
each agent. In contrast to structural definitions of

organizations, this model is adaptive, since agents can compute
who knows how to answer a question. New relationships can
form within the organization. One agent can be programmed to
act as a manager, delegating work to other agents according to
their advertised capabilities, monitors their progress using

probes and adjusts their position in the organization
accordingly.

A method to combine agents more indirectly is by sharing
access to a blackboard.

Blackboard -- A blackboard is realized in the K-bus as a

restricted subclass of agent - it is a passive server which is
interested in everything (or at least whatever it is programmed

for). Agents post information on the blackboard by sendin.g it
messages, they install probes on it to gather information
resulting from matching events plus several current and
historical conditions. A blackboard is thus a semi-permanent
communication space, but also acts as a mechanism for a
loosely-coupled organization whereby several agents can

combine partial results without repeated inter-agent
communication. It is more than a global database, in that the
probes' histories provide a short-term memory and record of
partial matches, so that new additions and requests can be

processed quickly (in the style of the Rete algorithm for rule-
based systems); in contrast, database queries are processed one
at a time. This is an object-oriented version of the blackboard

concept, and it is important to contrast it with blackboard
systems which contain a centralized scheduler in control of the
serial execution of agents - in the K-bus the agents are
autonomous, and questions of parallelism and interference are

answered by the message-passing architecture.

The blackboard's internal structure may be partitioned, to allow

a for hierarchy of spaces available to groups of agents, but the
external interface is ignorant of the internal structure of objects
posted on it. Although logically centralized, it may be

MESSAGE MANAGER

I Cal_abilities I

I ,rests I

[Acq,,alntaneos I

AGENT

I

III I I IIII IIIII II II

Figure--12, An example of a complex Agent composed of several objects

314

physically distributed for performance reasons - in this case,
consistency must be maintained using techniques (e.g. multiple
copies, deadlock avoidance) borrowed from distributed
databases. A blackboard is demonstrated in Figure--13.

Interim Demonstration Configuration m The present
ATC prototype was developed as an early assessment of the

difficulties involved in operating a network of cooperating
expert systems. The demo system is comprised of five expert
systems (ES). Primary control is represented by the Automated
Test Conductor (ATC) user interface. A message router,

equivalent to the Finder mentioned above, handles information
flow and command/control. The interface to the ATC is via an

oop iconic display window, much like a Macintosh. This

interim demo emphasized the concepts of distributed control
and oop communication. Via a UNIS-like data management
interface, oop scripts can be developed for a test scenario.

Process ES objects may be assigned to any workstation or
mainframe in the network and given initialization information.
All results flow back to the ACT operator window. Each of the

distributed sub-processes open their own respective windows
on their hosted machine for inspection. This entire process is
stored in object form and when initiated the software is auto-

code generated, distributed, and executed. Figure--14 shows
the five expert system configuration. The ATC user interface is
in Figure--15.

REFERENCES

[1] Szatkowski, Dr. G., 'KB Partitioning Design for CLIPS', CLIPS
Users Conference, Houston Tx., 1990.

[2] Szatkowski, Dr. G., 'AI Decision Support for Low Cost Launch
Vehicle Integrated Mission Operations', SOAR, Dayton Oh., 1988.

[3] Szatkowski, Dr. G., 'ALS STRESS Final Report', USAF contract
F33615-87-C-3620, 1990.

[4] Szatkowski, Dr. G., 'Approaches to V&V of Imbedded Decision
Support Systems Applied to Launch Vehicle Ops', Validation and
Testing KB Systems Workshop, IJCAI, 1989.

[5] Szatkowski, Dr. G., 'ALS Expert Systems ADP-2302 Final Report',
USAF contract F304701-88-C-0110, 1990.

[6] Le T. and Homerier P.,'Portable Inference Engine, PIE', Aerospace
Corporation, LA Ca.

KNOWLEDGE-BUS DEMO ARCHITECTURE

Expert Systems m ADP 2302

Smart Test Conductor

D
,¢====_

I
f

To o(_ pto_es or

Smart GSEv,_s_.Operati°ns _ AI B_

4a_ Probe or Ob_ecl Browser

K-Bus Monitor

Figure--13, An example of a blackboard application

315

Addl Smart GSE Operations

ORI.GINAL PAGE IS

OF POOR QUALITY

ADP 2302 - INTERIM DEMO
Vehicle Ground Intelligent Automation
Command, Control, and Data Flow

Sun60
I " 1

Automated Test
Conductor (ATC)

I
I . . . - .. __-

I 1
_____________I_-

Commands
Sun260

ATC Background and Diagnostic (ES)

I
Sun1 10

Commands

Propellant Manager
(ES)

9

_I-- __ - __ - - -- - .-

Figure-14, ATC prototype demonstrated dismbuted multiple-Expert System cooperation

Figure-15, Photograph of the ATC object-oriented Scripting cnpability

316

